HomeAstronomy & SpaceDynamics of ocean worlds likely controlled by their rotation

Dynamics of ocean worlds likely controlled by their rotation

Discovering that many of the large moons in the outer solar system may host significant subsurface oceans of liquid water has been a key advance in planetary science. These moons represent some of the most promising habitats for life beyond Earth. But their hidden nature makes direct study difficult.

These oceans appear to be tens or even hundreds of kilometers deep and bounded at the top by a thick and icy shell and at the bottom by a source of geothermal heating. A key element to understanding their nature is to deduce the patterns of ocean circulation. Because it is the ocean that transports heat and potential biosignatures to the surface. There they could be detected by future space missions.

Although some previous studies have simulated the dynamics of subsurface oceans, those calculations have relied on parameters that are poorly constrained by observations.Bire et al pursued a novel approach by casting their simulations in terms of a dimensionless number which is the natural Rossby number. It is a ratio of buoyancy flux and ocean depth, for which observational constraints do exist.

The authors present a series of simulations that explore a wide parameter range of ocean depth and driving heat flux. Rossby number regime is likely appropriate for icy moons. The simulated moon’s rate of rotation has a strong effect on the dynamics of the subsurface ocean. This stands in contrast to the currently accepted model.

Consistent with arguments rooted in well-understood rotating fluid dynamics in a spherical shell. The ocean’s circulation breaks into two regions. Convective plumes extend upward parallel to the moon’s axis of rotation from the bottom to the top, at higher latitudes. Water is carried around the moon longitudinally and interacts less strongly with the ocean floor, at lower latitudes.

This flow pattern likely dampens how efficiently geothermal heat from deep within the moon can be transferred across the ocean up to the surface. Equatorial regions are less efficient than polar regions at heat transport with important implications for the thickness of the ice shell at the surface.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Latest Science News Articles - PhysicsAlert.com

explore more