HomeChemistryBiochemistryCofactor engineering drives natural product synthesis

Cofactor engineering drives natural product synthesis

Advances in synthetic biology have paved the way toward the sustainable synthesis of complex natural products. The baking yeast Saccharomyces cerevisiae has been widely used in food industry and has become one of the main platforms for building cell factories due to its robustness, convenient cellular engineering and reliable safety.

A research group led by Prof. Zhou Yongjin from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Prof. Zhang Lei from Naval Medical University, has developed efficient cofactor engineering strategies to derive phenolic acid biosynthesis in yeast. The study has been published in Nature Chemical Biology.

The cofactor metabolism is tightly regulated and complicatedly distributed in sub-organelles in the eukaryotic cells such as yeast. It requires novel and feasible engineering strategies to cope with the complex cofactor regulation.

The researchers developed tailored engineering strategies to enhance the supply, re-localization, and recycling of cofactors NADPH, FAD(H2), and SAM, which enabled high-level production of caffeic acid (5.5 g/L) and ferulic acid (3.8 g/L).

This work reveals the regulation of different cofactors in yeast, especially the distribution of cofactors between different organelles in cells, and provides theoretical guidance for cofactor engineering. It also provides sufficient precursors for the efficient synthesis of complex active natural products.


Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Latest Science News Articles - PhysicsAlert.com

explore more