HomeNanotechnologyNANOMATERIALSResearchers take a step toward creating an axle-rotor nanomachine

Researchers take a step toward creating an axle-rotor nanomachine

Ads

University of Washington researchers have taken a major step toward the creation of an axle-rotor nanomachine. The study was published in the journal Science. Scientists described how they used DNA coding to customize E. coli to push them into creating proteins that assembled into rotors and axles.

Scientists noted that molecular engines are abundant in nature from the tails of flagellum on some bacteria to the F1 motor of ATPase. These examples have served as good models. Scientists attempted to harness them in nature or to create new ones in the lab have been mostly unsuccessful. This is due to the single purpose features of natural engines and the unpredictability of protein folding in synthetic attempts. Scientists overcome some of the hurdles that others have faced and have taken a major step toward the creation of a molecular engine by creating two of the main parts necessary for such a device. These are an axle and a rotor. Scientists managed to connect them to each other.

Scientists used a software program called Rosetta that allowed them to design ring-like proteins with specified diameters. They then used the data from the program to add DNA coding to amino acids in E.coli bacteria that make up proteins. Such proteins are made of chains of the amino acids. It is the sequence of them that defines the shape they will take when they spontaneously fold. Researchers were able to coax some of the proteins into folding into rotor shapes and others into axle shapes. They then went further by coaxing multiple proteins to fold together into rotor-axle combinations.

Scientists looked at the engine prototypes they created using cryogenic electron microscopy and found the parts had folded as desired. But it was impossible to tell if the rotors were turning, because such microscopy can only take one picture at a time. The researchers’ next goal is to design a molecular engine that has components that push the rotor to spin in a desired direction.

Ads

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Latest Science News Articles - PhysicsAlert.com

Ads

explore more

Ads