HomeAstronomy & SpaceNew study indicates limited water circulation late in the history of Mars

New study indicates limited water circulation late in the history of Mars

A research team led by Lund University in Sweden has investigated a meteorite from Mars using neutron and X-ray tomography. The technology will probably be used when NASA examines samples from the Red Planet in 2030. It showed that the meteorite had limited exposure to water. Thus, making life at that specific time and place unlikely.

NASA’s spacecraft Perseverance parachuted onto the dusty surface of Mars in February 2021. The vehicle will skid around and take samples to try to answer the question posed by David Bowie in Life on Mars in 1971. It isn’t until around 2030 that Nasa actually intends to send the samples back to Earth. But material from Mars is already being studied in the form of meteorites. Now, an international research team has studied an approximately 1.3-billion-year-old meteorite using advanced scanning.

Since water is central to the question of whether life ever existed on Mars, we wanted to investigate how much of the meteorite reacted with water when it was still part of the Mars bedrock. To answer the question of whether there was any major hydrothermal system, the researchers used neutron and X-ray tomography. X-ray tomography is a common method of examining an object without damaging it. Neutron tomography was used because neutrons are very sensitive to hydrogen.

This means that if a mineral contains hydrogen, it is possible to study it in three dimensions and see where in the meteorite the hydrogen is located. Hydrogen (H) is always of interest when scientists study material from Mars. Because water (H2O) is a prerequisite for life as we know it. The results show that a fairly small part of the sample seems to have reacted with water and that it therefore probably wasn’t a large hydrothermal system that gave rise to the alteration.

A more probable explanation is that the reaction took place after small accumulations of underground ice melted during a meteorite impact about 630 million years ago. This doesn’t mean that life couldn’t have existed in other places on Mars or that there couldn’t have been life at other times.

The researchers hope that the results of their study will be helpful when NASA brings back the first samples from Mars around 2030 and there are many reasons to believe that the current technology with neutron and X-ray tomography will be useful when this happens.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Latest Science News Articles - PhysicsAlert.com

explore more